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Abstract

In this paper we propose a probabilistic framework for an uncertainty quantification
study of a carbon cycle model. A Global Sensitivity Analysis (GSA) study indicates the
parameters and parameter couplings that are important at different times of the year
for Quantities of Interest obtained with the Data Assimilation Linked Ecosystem Carbon5

(DALEC) model. We then employ a Bayesian approach to calibrate the parameters
of DALEC using net ecosystem exchange observations at the Harvard Forest site.
The calibration exercise is guided by GSA and by Fisher information matrix results
that quantify the amount of information carried by the experimental data about specific
model parameters. The calibration results are employed in the second part of the paper10

to assess the predictive skill of the model via posterior predictive checks. These checks
show a better performance for the non-steady state model during the growing season
compared to the one employing steady state assumptions. Overall, this study leads to
a 40% improvement in the predictive skill of DALEC and highlights the importance of
considering correlations in the model parameters as informed by the data.15

1 Introduction

Climate studies strongly depend on the modeling of the Carbon cycle. Carbon cycle
models, in turn, strongly depend on the capability of current land models to simulate
the terrestrial ecosystem and to capture C exchanges between land and atmosphere.
There have been a significant number of studies looking to leverage the increasing20

amount of experimental observations and calibrate parameters in several terrestrial
ecosystem models. These studies have faced a number of challenges related to han-
dling data and measurement errors from multiple sources, formalizing model error,
dealing with parameter observability and data sparsity, to name a few. In this paper
we propose a probabilistic framework to estimate parameters for a process-based25
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ecosystem model. Representative studies, both probabilistic and non-probabilistic, are
reviewed below.

Over the past two decades several studies employed data assimilation techniques to
calibrate Carbon cycle models. Here we discuss the works that motivated the current
study. Kaminski et al. (2002) used an adjoint approach to infer model parameters for5

a Simple Diagnostic Biosphere Model. The variational data assimilation problem was
formulated based on Bayes formula with both the likelihood and the prior presumed
Gaussian. This results in a quadratic cost function that employs an L2 regularization
of the model parameters. This formulation led to optimal values for model parame-
ters. The width of the approximate Gaussian distributions around these optimal values10

was sensitive to the covariance matrices assumed in the cost function. More recently,
Kaminski et al. (2012) employed a similar framework to calibrate the process parame-
ters of a terrestrial biosphere model against two observational data streams. The model
employing optimized parameters shows clear improvements when checked against in-
dependent observations compared to non-optimized parameters. A similar approach15

was applied by Rayner et al. (2005) to study the space–time distribution of terrestrial
carbon fluxes generated by a terrestrial carbon cycle data assimilation system. Tjiputra
et al. (2007) employed an adjoint approach to estimate optimal values for 10 ecosys-
tem control variables in an ocean general circulation model coupled with a carbon cycle
model. The optimization problem is based on a quadratic misfit between the simulated20

surface chlorophyll and observations. Kuppel et al. (2012) used measurements of net
CO2 fluxes (NEE) and latent heat fluxes (LE) to constrain the parameters of a bio-
geochemical vegetation model. The optimization employed an L-BFGS algorithm for
a quadratic cost function similar to the study by Kaminski et al. (2002). They found
that the simulation results are improved by using data from multiple sites, compared to25

single-site parameter optimization.
Some of the above studies start from a Bayesian framework when setting the cost

function for a least-square fitting procedure. These studies are based on a Gaussian
assumption for the discrepancy between model outputs and observations, and they
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also employ Gaussian priors to help regularize the problem. However, the resulting
probability densities for model parameters are approximated as multivariate Gaussian
distributions near the Maximum a Posteriori (MAP) estimate of the parameter values.
This assumption is valid only in the vicinity of MAP values, unless the model is linear
in all parameters. In this paper we propose to employ a Bayesian framework to esti-5

mate parameters in the Data Assimilation Linked Ecosystem Carbon (DALEC) model
(Williams et al., 2005), without relying on Gaussian assumptions for posterior distribu-
tions. Several studies in the past decade, some of which mentioned below, employed
sampling techniques to explore non-Gaussian posterior distributions for parameters in
ecosystem models.10

Knorr and Kattge (2005) employed a Bayesian framework to calibrate the param-
eters of a Terrestrial Ecosystem Model (TEM). A Metropolis–Hastings Markov Chain
Monte Carlo (MCMC) approach was used to sample the posterior distribution of model
parameters given a Gaussian likelihood based on eddy covariance measurements of
carbon and water fluxes. It was found that about 5 parameters were constrained by the15

available data and that uniform prior ranges had a strong impact on the posterior dis-
tributions. Braswell et al. (2005) performed a synthetic analysis of Net Ecosystem Ex-
change (NEE) of CO2 at Harvard Forest using a simplified photosynthesis and evapo-
transpiration model. In a Bayesian framework, they employed independent Gaussian
daily discrepancies between model predictions and observations. The posterior dis-20

tributions for modeled parameters, sampled with MCMC, were compared for several
synthetic data sets to determine how much information the NEE observations carry
about each parameter. A Bayesian framework was also employed by Xu et al. (2006)
to study the posterior distributions of C transfer coefficients and pool sizes in a TEM,
based on several data sets from the Duke Forest Free-Air CO2 site. Tang and Zhuang25

(2009) employed both Global Sensitivity Analysis (GSA) and a Bayesian framework to
improve parameterization of a Terrestrial Ecosystem Model. This study employed Latin
Hypercube Sampling from the prior distributions of model parameters, and sample im-
portance resampling, to construct posterior distributions for model parameters, and to
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identify key parameters for the ecosystem model and their effect on seasonal C dy-
namics. Ricciuto et al. (2008) employed an MCMC approach to sample the posterior
densities of key parameters for combined global-scale terrestrial and ocean carbon cy-
cle models. The study found that temporal correlation has a significant impact on the
calibrated parameters and subsequently on model predictions.5

Several studies compared probabilistic and non-probabilistic parameter estima-
tion methods for terrestrial biogeochemical models. Several participants to the Op-
tIC project (Trudinger et al., 2007) presented results employing optimization, varia-
tional, and probabilistic methods. The main conclusion of the study was that modeling
choices, i.e. the type of cost function for optimization methods, or the choice of den-10

sities for probabilistic methods, had a greater impact on the results than the choice of
solution methods. Similarly, the REFLEX project (Fox et al., 2009) selected the DALEC
v1 model (Williams et al., 2005) to assess the performance of several parameter es-
timation algorithms, using both synthetic and observed NEE and LAI data. This study
found that it is difficult to analyze the performance of parameter estimation methods15

in the presence of noisy and sparse data, and that all methodologies should employ
uncertainty models that are consistent with observations. More recently, Ziehn et al.
(2012) compared variational and probabilistic techniques to estimate parameters for
BETHY, a process-based model of the terrestrial biosphere. It was found that the Gaus-
sian approximation is reasonable for most parameters. This study also indicates that20

probabilistic approaches can be prohibitively expensive for complex ecosystem mod-
els.

From this review, we noted a set of critical outstanding research questions in the
field of constraining C cycle models. First, few, if any, C cycle models have had a com-
plete parameter sensitivity analysis, particularly with respect to temporal dynamics.25

Such analyses are vital for organising effective parameter calibration. Second, few, if
any, calibration studies have investigated steady state/non-steady state assumptions.
It is also important for the ecological community to understand how information con-
tent depends on model assumption, e.g. steady state. Currently, there are no agreed
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approaches in this community for quantifying information content of data on parame-
ters, or for estimating the predictive skill of ecosystem models.

In this paper we propose a framework for the estimation of uncertainties in ecosys-
tem land model parameters followed by a forward Uncertainty Quantification (UQ) study
to examine the predictive capabilities of the model given the calibrated set of param-5

eters. Figure 1 shows a schematic of this framework, consisting of two intrinsically
connected workflows, for Parameter Estimation and Forward UQ. In this schematic,
the same ecosystem Carbon model is used for both the “Measurement Model” g() and
the “Computational Model” m(). The Carbon model is based on a modified version of
the DALEC v1 model (Williams et al., 2005; Fox et al., 2009). This version of DALEC10

has been modified to facilitate comparisons with the Community Land Model (Thornton
et al., 2007), and with the Local Terrestrial Ecosystem Carbon Model (Ricciuto et al.,
2011).1 The joint probability density for input parameters is estimated in a Bayesian
framework. Bayesian methods provide a flexible framework for handling heterogeneous
information, and allow for sequential updates of posterior distributions as the prior in-15

formation is revised.
To facilitate the estimation of a high-dimensional posterior density for model pa-

rameters, we undertake parameter sensitivity tests using a variety of methods. First,
parameters are ranked using Sobol indices (Sobol, 1993; Campolongo et al., 2000).
Posterior densities are estimated first for the most important parameters, while less20

important parameters are fixed at their nominal values. This constraint is subsequently
relaxed to arrive at a joint posterior distribution over the entire parameter space. Sec-
ond, since the GSA does not consider the error model when ranking parameters, we
complement the GSA results with an analysis of the Fisher Information Matrix (FIM)
(Lehmann and Casella, 2003). The FIM results quantify the amount of information the25

experimental observations carry about the set of DALEC parameters for a particular
setting for the discrepancy between model predictions and data. This study also allows

1The source code for the modified DALEC version is available upon request from Daniel
Ricciuto (ricciutodm@ornl.gov)
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an investigation of the information content of data based on steady state vs. non-steady
state assumptions.

Finally, we undertake a Bayesian posterior predictive check (Lynch and Western,
2004) to assess the adequacy of the calibrated Carbon model to predict the experimen-
tal observations. The predictive skill of this model is further assessed via Continuous5

Rank Predictive Score (Gneiting and Raftery, 2007) computations.
This paper is organized as follows. Section 2 provides a description of the processes

comprising DALEC and of their associated parameters. Section 3 presents the GSA
results, including first order effects, in Sect. 3.1, and joint effects, in Sect. 3.2. FIM
results and posterior distributions for model parameters are explored in Sect. 4 and the10

predictive capabilities are estimated in Sect. 5. We end with conclusions in Sect. 6. The
methods employed in this paper are part of UQTk v3.0.2

2 Description of carbon cycle model

The schematic in Fig. 2 shows a 1 day time step consisting of a sequence of process-
based submodels shown with green boxes. These submodels are connected via fluxes15

and interact with five major Carbon (C) pools. The fluxes calculated on any given day
impact C pools and processes in subsequent days. The blue arrows in this figure in-
dicate C pools or model variables that are input parameters to specific sub-models,
while green arrows indicate the C pools or model variables affected by a particular sub
process.20

This version of DALEC used in this study is modified from DALEC v1 used in Fox
et al. (2009). Both versions of the model consist of three vegetation C pools, for leaf,
stem, and root, and two soil C pools, for soil organic matter and litter. The photosynthe-
sis is driven by the Aggregate Canopy Model (ACM) (Williams et al., 2005), which itself

2http://www.sandia.gov/UQToolkit. UQTk v3.0 is currently undergoing formal review. In the
meantime, the source code is available upon request from Bert Debusschere (bjdebus@sandia.
gov)
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is calibrated to the Soil-Plant-Atmosphere (SPA) model (Williams et al., 1996). The fol-
lowing modifications were made: An update was made to employ a temperature-based
deciduous phenology used in Ricciuto et al. (2011), driven by the six parameters shown
in Fig. 2. Spring phenology is driven by a linear relationship to growing degree days,
while senescence is driven by mean air temperature. To reduce model complexity, the5

plant labile pool was removed and stem carbon is used to support springtime leaf flush
given the spring phenology and the maximum leaf area index parameter. Given the
importance of maintenance respiration in other sensitivity analyses (Sargsyan et al.,
2014), this process was added along with parameters controlling the base rate and
temperature sensitivity.10

In this version of DALEC, ACM shares one parameter, the specific leaf area (lma),
with the deciduous phenology and employs two additional parameters, leaf C : N ratio
(leafcn) and Nitrogen use efficiency (nue). The autotrophic respiration model computes
the growth and maintenance respiration components and is controlled by three param-
eters: the growth respiration fraction (rg_frac), and the base rate at 25 ◦C (br_mr ) and15

temperature sensitivity for maintenance respiration (q10_mr ), respectively. The alloca-
tion sub-model partitions C to several vegetation C pools. Leaf allocation is first deter-
mined by the phenology submodel, and the remaining available C is allocated to the
root and stem pools depending on the fractional stem allocation parameter (astem).
The “Litterfall” submodel redistributes the C content from vegetation pools to soil pools20

and is based on the turnover times for stem (tstem), root (troot), and leaves (tleaf ).
The sequence of sub-models concludes with the “Decomposition” which models the
heterotrophic respiration component and the decomposition of litter into soil organic
matter (SOM). This sub-model is driven by temperature sensitivity for heterotrophic res-
piration (q10_hr ), the base turnover times for litter and SOM at 25 ◦C (br_lit, br_som),25

respectively, and by the decomposition rate (dr ) from litter to SOM.
Model parameters and their nominal values are provided in Table 1. These parame-

ters are grouped according to the sub-model that employs them. Except for leaf mass
per unit area (lma) which impacts both the deciduous leaf phenology and ACM, all

6900

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/6893/2014/gmdd-7-6893-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/6893/2014/gmdd-7-6893-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 6893–6948, 2014

Uncertainty
quantification for

Carbon Cycle model

C. Safta et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

other parameters are employed in single submodels. The numerical ranges for these
parameters are also provided in the table. These ranges, corresponding to the Harvard
Forest site (Urbanski et al., 2007), are set to capture a broad range of reasonable val-
ues used in past studies (Fox et al., 2009; White et al., 2000) and will serve as a base
for the GSA study presented in the next section. In addition to the model parameters,5

several processes are driven by the observed air temperature, solar radiation, vapor
pressure deficit, and CO2 concentration at the flux tower site.

3 Global sensitivity analysis

GSA formally connects uncertainties in model output to the underlying uncertainties
present in the model inputs. We employ variance-decomposition methods where the10

variance of the model output is decomposed into fractions associated with input factors
and their interactions. The primary quantity of interest (QoI) for GSA is NEE, for which
we have experimental observations available. We explore GSA for several other QoI’s
to understand the role each parameter or set of parameters play on other DALEC
outputs in addition to NEE. Specifically we consider the Gross Primary Production15

(GPP), the Total Vegetation Carbon (TVC), and the Total Soil Carbon (TSC).
The effects of input parameters θ = {θ1, . . . ,θNθ

} and their interactions on a model
output y =m(θ ), are quantified through Sobol indices (Sobol, 1993; Campolongo et al.,
2000). The first order Sobol indices are given by

Si =
Varθi [Eθ∼i (m(θ )|θi )]

Varθ[m(θ)]
, i = 1, . . . ,Nθ (1)20

where θ∼i = {θ1, . . . ,θi−1,θi+1, . . . ,θNθ
}, Eθ∼i [·] is the expectation with respect to θ∼i ,

and Varθi [·] is the variance with respect to θi .
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Similarly, the joint sensitivity indices Si j are

Si j =
Varθi ,θj [Eθ∼(i ,j )

(m(θ)|θi ,θj )]

Varθ[m(θ)]
−Si −Sj , i , j = 1, . . . ,Nθ. (2)

While interactions between three or more parameters can be defined in a similar fash-
ion, for most physical models these higher-order interactions are typically negligible.

The sensitivity index Si can be interpreted as the fraction of the variance in the QoI5

that can be attributed to the i th input parameter only, while Si j is the variance frac-
tion that is due to the joint contribution of the i th and j th input parameters. The Sobol
indices (1) and (2) can be written in integral forms, but these integrals will not be an-
alytically tractable when the input parameter space is high-dimensional. In order to
evaluate these indices numerically we employ a Monte-Carlo approach enhanced by10

techniques described by Saltelli (2002) and modified by Kucherenko et al. (2012) to
account for parameter dependencies. This method employs sampling the input param-
eters from their prior distributions and an efficient re-use of model evaluations to reduce
the computational cost of estimation of the above conditional variances.

We employ maximum entropy (MaxEnt) arguments to choose prior distributions for15

the model parameters, since we are only given prior information on parameter bounds
(Table 1). The MaxEnt principle states that the maximum entropy distribution is the least
informative distribution (Jaynes, 1968). Among distributions with finite support, the uni-
form distribution has the largest entropy, hence, given available prior information, we
choose uniform prior distributions for all model parameters, with bounds provided in20

Table 1. The prior distributions for these parameters are independent, except for the
spring phenology parameters gdd_min and gdd_max, which are bound by the inequal-
ity constraint gdd_min<gdd_max.

For each of the QoIs mentioned above, we compute monthly averages corresponding
to the entire simulation, i.e. the January average is computed using the January daily25

QoI values for all available years. Global averages for all QoIs are also analyzed for
comparison purposes. The simulations are driven by daily minimum and maximum
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temperatures, global radiation, and CO2 concentration for years 1992–2006, at the
Harvard Forest site (Urbanski et al., 2007).

3.1 First-order effects

Figures 3–6 show matrices of first-order Sobol indices for the four QoIs mentioned
above. The colormap changes from red for large Sobol index values to blue for Sobol5

indices ≈ 1%. The grayscale corresponds to Sobol index values from 1% down to
0.1%, while blank cells indicate values smaller the 0.1%. Each row in these matrices
shows the Sobol indices corresponding to a particular average QoI. The sum of these
values on each row indicates the sum of variance contributions due to individual pa-
rameters to the total variance of that particular average QoI. For example, in Fig. 3,10

the first order Sobol indices for the September average NEE sum up to 0.73. The re-
maining 0.27 fraction of the total variance for this month is due to pairwise interactions
between parameters or higher order interactions.

Different parameters have larger impacts at certain times of the year. For NEE, in
Fig. 3, phenology parameters tsmin and leaffall, which control the senescence of leaves15

in the Fall, have a significant impact on NEE during this period only. Specifically, tsmin,
which is the critical temperature at which leaffall begins, mainly affects NEE in October.
Similar behavior is seen for parameters that control GPP. Parameter gdd_min, which is
the number of growing degree days at which leaf budbreak occurs, has the most impact
in March and April. The strong dependence of these fluxes on phenology parameters20

highlights the importance of an accurate phenology model, as has been shown in other
modeling studies, e.g. (Richardson et al., 2012). On the other hand, the Nitrogen use
efficiency nue, which controls the amount of GPP per unit leaf Nitrogen, is important
throughout most of the growing season (June–September). This is broadly consistent
with other sensitivity studies that have shown strong sensitivity to leaf nitrogen, e.g.25

Sargsyan et al. (2014).
TVC and TSC are carbon pools and tend to vary on a much larger timescale than

GPP or NEE, which are fluxes. Therefore, the Sobol indices do not exhibit significant
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seasonal variability. TVC is most strongly controlled by the base rate of maintenance
respiration br_mr, which represents a Carbon cost plants must continuously spend
during their lifetime. TSC is most strongly controlled by the base rate of decomposition
for soil organic matter br_som, which effectively determines the pool residence time.
Given the same inputs, a pool with a longer residence time will contain more Carbon.5

3.2 Joint effects

Figures 7–8 show relevant joint sensitivity indices corresponding to NEE and GPP
which exhibit seasonal variability for the first-order Sobol indices. In these figures, each
node shows relevant parameters while the label on each link corresponds to the joint
Sobol index Si j , in % units. In this figure the joint Sobol index values are rounded to the10

nearest integer for clarity. The results for these months, selected based on the relevant
active processes affecting these two model outputs, show that parameter interactions
are also important. For example, during Spring, the interaction between gdd_min and
other ACM and AR model parameters account for around 10–20 % of the total vari-
ance for both NEE and GPP. Conversely, in the Fall, tsmin and br_mr have important15

interactions with several other phenology, AR, and Decomposition model parameters.
These interactions account for about 15% of the total variance in both NEE and GPP
and play an important role in determining the evolution of the Carbon cycle during the
senescence period.

4 Parameter calibration20

We employ a Bayesian framework to compute posterior probabilities for the model pa-
rameters discussed in the previous sections. This framework is well-suited for dealing
with uncertainties from different sources, including parametric and model uncertainty
and experimental errors (Sivia, 1996). In the Bayesian approach, the probability density
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for the model parameters is characterized as

p(θ |D) =
LD(θ )p(θ )

p(D)
(3)

Here p(θ ) and p(θ |D) are the prior and posterior probability densities, respectively, for
model parameters θ . These densities represent our knowledge of θ before and after
learning from the data D. The likelihood function LD(θ ) = p(D|θ ) is the likelihood of the5

data D for a particular instance of model parameters θ . The denominator in Eq. (3),
p(D), is the “evidence”, computed by integrating the numerator over the support of θ .
It plays a role of a normalizing constant in the parameter estimation context, and is not
computed here.

The data available for the calibration of model parameters consists of the Harvard10

Forest’s daily Net Ecosystem Exchange daily values processed for the North American
Carbon Program Site Synthesis study (Barr et al., 2013). Flux data were measured by
the site PI’s (Urbanski et al., 2007). Hill et al. (2012) estimated that daily NEE estimates
follow a normal distribution. Consistent with Hill et al. (2012), systematic biases are not
included in the present study. We further assume that daily measurement noise/errors,15

εd, are independent. Daily measurement errors or standard deviations are provided
by the North American Carbon Program (NACP) interim synthesis (Barr et al., 2009).
For this study we neglect the model error, εg in Fig. 1. Given these assumptions, the
likelihood LD(θ ) is written as

LD(θ ) =
Nd∏
k=1

1√
2πσ2

k

exp

(
−

(yk −Dk)2

2σ2
k

)
(4)20

where Dk and σk are the observed NEE value and its standard deviation for day k,
while yk =mk(θ ) is the corresponding NEE value predicted by the DALEC model. The
daily observations cover a period of 15 years starting with year 1992. A snapshot of
these observations, including the magnitude of the observation error, is provided in
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Fig. 9. The standard deviations for the daily NEE values were estimated using a boot-
strapping technique using half-hourly NEE data (Papale et al., 2006; Barr et al., 2009).

For this study we consider two approaches for running the forward model and gen-
erating the output needed for the computation of the likelihood in Eq. (4). The first
approach employs a steady state assumption, with DALEC run in a spinup mode until5

a steady state is reached. This takes typically 30–50 cycles of the 1992–2006 mete-
orology (450–750 total years). In this context, each cycle corresponds to running the
model for 15 years with the meteorology inputs of 1992–2006. At the start of the first
cycle, the Carbon pools are empty. For subsequent cycles, the C pools are initialized
with the final state from the previous cycle. The daily model-predicted NEE values used10

for parameter estimation are those of the first cycle after the system reaches a steady
state. This approach follows the protocol for NACP interim synthesis simulations, but
fails to capture the large negative NEE observed at Harvard Forest. In the second ap-
proach, the initial values of the C pools in January 1991 are added to the set of model
parameters to be estimated. This approach employs unsteady assumptions and, for15

any given set of parameter values, DALEC is run one cycle only, for 1992–2006. The
resulting model output values are employed to compute the likelihood. The model eval-
uations are cheaper compared to the first approach, however the dimensionality of the
parameter space is increased by 5, 3 vegetation C pools and 2 soil Carbon pools, from
18 to 23 parameters. Henceforth, we will refer to these two approaches as D18 and20

D23.

4.1 Fisher information matrix

We first proceed to estimate the amount of information datasets consisting of NEE ob-
servations are expected to carry about the DALEC model parameters. This is quantified
via Fisher Information (Fisher, 1973), which is defined as the amount of information the25

observable NEE carries, as a random vector, about the unknown parameter vector θ.
Let Z be a random vector of NEE observations. For this work, the probability density
for Z is the multivariate normal likelihood defined by Eq. (4). In the current context, the
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specific dataset of NEE observations, D, is replaced by a random vector of NEE obser-
vations Z . The Fisher Information Matrix (FIM) is defined as (Lehmann and Casella,
2003)

I (θ )i ,j = −E
[

∂2

∂θi∂θj
logLZ (θ )|θ

]
= −

∫
Ω(Z)

∂2 logLZ (θ )

∂θi∂θj
LZ (θ )dZ (5)

where Ω(Z) represents the space of all possible values of Z . Since LZ (θ ) is a multivari-5

ate normal, Z ∼ N(m(θ ),Σ), with a constant covariance matrix Σ, the Fisher Information
Matrix (FIM) entries in Eq. (5) can be shown to be

I (θ )i ,j =
∂mT

∂θi
Σ−1 ∂m

∂θj
. (6)

Here, m(θ ) is the vector of daily NEE values output by DALEC, m(θ ) =(
m1(θ ), . . . ,mNd

(θ )
)T

, with mk = NEEk for day k. The covariance matrix Σ is diago-10

nal, constructed with daily variance values, σ2
k , on the diagonal, see also Eq. (4). In

order to compare the FIM entries corresponding to different parameters, the parameter
values are normalized by their corresponding prior range. The normalized FIM entries
are then computed as I ∗(θ )i ,j = I (θ )i ,j∆θi∆θj . Here ∆θi is the range corresponding to
θi , computed based on values given in Table 1.15

The FIM values are expectations over the data, computed for specific values for
model parameters θ . Thus, an uncertain θ leads to uncertain FIM entries. We use
Monte Carlo sampling to generate random samples from the MaxEnt-derived priors on
θ . This yields an ensemble of FIM values, from which we can construct histograms
for each FIM component. Since the model output dependence on θ is not given20
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analytically, we compute the partial derivatives in Eq. (6) by numerical differentiation3

∂mk

∂θi
≈

δmk

δθi
=

mk(. . . ,θi−1,θi +δθi ,θi+1, . . .)−mk(θ )

δθi
. (7)

The perturbation δθi is set to
√
εmθi , where εm is the upper bound of relative error

due to rounding in floating-point arithmetic, and is typically of the order of 2.2×10−16

for double precision (64 bit) computations.5

Normalized histograms for select diagonal entries of the FIM are shown in Figs. 10
and 11, using the model setup for D18. In these figures, FIMθi stands for I (θ )∗i ,i , de-

fined above. Convergence tests, results not shown, indicate that about 104 Monte Carlo
samples are sufficient to generate converged histograms. The results were grouped,
by visual inspection, according to the magnitude of log(FIMθi ). Figure 10 shows model10

parameters with larger FIM diagonal entries while Fig. 11 shows parameters corre-
sponding to generally smaller values. This indicates that NEE observations are infor-
mative about the set of parameters shown in Fig. 10 (see the figure caption for the
list of parameter names), and that, consequently, the probability distributions for these
parameters are likely to be significantly updated through the Bayesian parameter es-15

timation discussed in this section. It is interesting to note that these parameters were
found to be important, based on the GSA results in the previous section, for NEE.
Specifically, gdd_min, q10_mr, br_mr, and rg_frac exhibit relevant first order effects,
shown in Fig. 3, while gdd_max and leaffall are relevant mostly through interactions
with other parameters, in Fig. 7.20

Conversely, the FIM values shown in Fig. 11 are much smaller, hence the calibration
exercise is not expected to update the probability distributions for these parameters
significantly. Among these parameters, br_som was found to be the most important
for the TSC. However, based on the FIM results, the NEE observations do not carry

3Alternatively, a set of ordinary differential equations for ∂mk/∂θi can be derived and solved
numerically.
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information about this parameter and its prior density will likely not be updated by using
the NEE data only. This likely results from the long residence time of the SOM pool –
the 15 year NEE record is not long enough to constrain it sufficiently. These conjectures
will be verified using the calibration results presented in the next section.

Based on the FIM results presented in this section and on the GSA results in Sect. 3,5

we separate the DALEC parameters into three groups. In the first group we include
gdd_min, gdd_max, q10_mr, br_mr, rg_frac, and leaffall. These parameters were high-
ligted both by the GSA and FIM results as being important for NEE. In the second group
we include tsmin, q10_hr, br_lit, and lma. These parameters were selected since either
the GSA or the FIM results suggested they are relevant to NEE. Finally, we place the10

remaining parameters in the third group. In the next section the posterior distributions
for model parameters are constructed sequentially starting with the most important
group of parameters, then gradually adding parameters, one group at a time.

4.2 Posterior distributions via MCMC

A Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the posterior15

probability density p(θ |D). MCMC is a class of techniques that allows sampling from
a probability density by constructing a Markov Chain that has the target density as its
stationary distribution (Gamerman, 1997; Gilks et al., 1996). In particular, we employ
an adaptive Metropolis algorithm (Haario et al., 2001), which uses the covariance of
the previously visited chain states to find better proposal distributions, allowing it to20

explore the posterior distribution in an efficient manner. Haario et al. (2001) shows that,
for Gaussian distributions, the adaptive sampling algorithm is similar in performance to
the Metropolis algorithm. For non-Gaussian posterior densities, the adaptive procedure
is superior to non-adaptive procedures, however the adaptive procedure is challenged
by the dimensionality of the parameter space.25

To facilitate the convergence of the adaptive MCMC algorithm we proceed gradu-
ally, starting with the first group of parameters mentioned in the previous section. The
schematic in Fig. 12 shows one iteration in the sequence of MCMC simulations. For
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the first iteration,

θ(1) = {gdd_min,gdd_max,q10_mr,br_mr, rg_frac, leaffall}

with initial values θ(1)
ini set to the nominal conditions provided in Table 1. The rest of

parameters are held constant at their nominal values. The initial covariance matrix, C(1)
ini ,

allows the MCMC algorithm to explore a number of possible states before adapting the5

sample covariance based on the sample history. For this study we found that a diagonal
covariance matrix with entries set to a fraction of about 1/16 of the variances for the
corresponding prior distributions provided a good start for the MCMC algorithm.

The MCMC states obtained during the first iteration are used to compute the co-
variance matrix corresponding to the first set of parameters C(1) which is then used10

to construct the initial covariance matrix for the second iteration, C(2)
ini . This process is

shown schematically in Fig. 12. The initial parameter values for the 2nd iteration consist
of the Maximum A Posteriori (MAP) for θ(1) augmented with the nominal values for

θ(2)\(1) = {tsmin,q10_hr,br_lit, lma}

The iterative process is completed after the third iteration, with θ(3)\(2) containing the15

rest of DALEC parameters.
We employ the Raftery–Lewis diagnostic (Raftery and Lewis, 1992) to determine

when the MCMC samples converge to stationary posterior distributions. For D18, ap-
proximately 4×106 samples are necessary to predict the 5, 50, and 95% quantiles of all
parameters to within ±1% accuracy with 95% probability. For D23, the Raftery–Lewis20

diagnostic test shows that 6×106 are necessary for converged posterior distributions.
Given 5×106 MCMC samples, the Effective Sample Size (Kass et al., 1998) (ESS) for
D18 varies between 10000 and 15000 samples depending on each parameter, while
for D23, ESS is between 8000 and 12000. This shows that there is significant auto-
correlation between chain samples, which is somewhat typical for MCMC samplers in25

high-dimensional spaces. To ensure converged posterior distributions, and since the
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computational model is cheap, results presented below are based on 107 MCMC sam-
ples for both D18 and D23.

We first proceed to analyse the model calibration results for D18, when DALEC is run
to a quasi-steady state for each parameter sample. In order to measure the degree of
dependence in the joint posterior distribution for the 18 model parameters we examine5

the “distance correlation” values (Székely et al., 2007) estimated based on the MCMC
samples. The distance correlation is a measure of dependence between two random
variables, being zero when they are independent. Given random variables X and Y
with finite first moments, the distance correlation R(X ,Y ) ∈ [0,1] is defined as

R(X ,Y ) =
ϑ2(X ,Y )√
ϑ2(X )ϑ2(Y )

(8)10

where ϑ2(X ,Y ) is the “distance covariance” between X and Y and ϑ2(X ) is the “dis-
tance variance”, ϑ2(X ) = ϑ2(X ,X ). The distance covariance ϑ2(X ,Y ) is defined as

ϑ2(X ,Y ) =E (||X −X ′||||Y − Y ′||)+E (||X −X ′||)E (||Y − Y ′||)
−2E (||X −X ′||||Y − Y ′′||) (9)

15

where (X ′,Y ′), (X ′′,Y ′′) are independent and identically distributed random variables,
drawn from the same joint density as (X ,Y ). Székely et al. (2007) provide numerical al-
gorithms to compute R(X ,Y ) given samples of random variables X and Y . The results
are shown in Table 2. In this table, parameters are grouped in blocks according to the
sub-model they participate in. The entries in the diagonal blocks show dependencies20

between parameters in the same sub-model while the entries in off-diagonal blocks
indicate dependencies between parameters from different sub-models.

The most important statistical dependencies are between nue and lma that control
the gross photosynthesis (ACM) and between rg_frac and nue that control net photo-
synthesis. Relevant dependencies are also observed between q10_mr, a parameter of25

the autotrophic respiration process, and q10_hr which participates in the heterotrophic
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respiration process. In order to further understand the dependencies between model
parameters we compute 1-D and 2-D joint marginal densities, via Kernel Density Esti-
mates (KDE) (Scott, 1992; Silverman, 1986), for the model parameters that exhibit dis-
tance correlation factors greater than 0.3. These results are shown in Fig. 13. The sta-
tistical dependencies identified above through R are also evident in 2-D joint marginal5

densities for the same parameters.
Figure 14 shows 1-D marginal densities for the rest of the parameters. These param-

eters show little dependence on other parameters and so the 1-D marginal distribution
is sufficient to characterize their density. Some parameters are well constrained to-
wards the center of the prior range, for instance br_mr and br_lit ; these parameters10

control the basal autotrophic and litter respiration rates, which occur on timescales for
which the NEE data have high information content. For tleaf and br_som, the NEE
observations are not informative, see Sect. 4.1, and their posterior densities remain
nearly uniform, the same as their prior densities. For tleaf, the lack of information is
due to the fact that the effects of leaf turnover on net fluxes are much more strongly15

controlled by their timing, as determined by the phenology parameters, than by the
background turnover rate. For br_som, its turnover rate is slow enough such that the
NEE data contain little useful information. The posterior densities for other parame-
ters, e.g. laimax, are tilted toward one end of their prior range. This might indicate that
the calibration process attempts to compensate for structural discrepancies between20

observations and model predictions by pushing some parameters toward either the
minimum or the maximum value of their prior range.

While the posterior distribution for br_mr is well updated in the calibration, the R
values between this parameter and all other parameters are smaller than the threshold
used to select parameters that show mutual dependencies. The posterior distribution25

for tsmin is piecewise uniform. This is due to the fact that minimum daily temperatures,
in degrees Celsius, are provided with one decimal digit accuracy and this parameter
is a threshold for leaf drop, i.e. its participation in the computational model is through
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an “if” statement. Hence all samples between successive one-digit accurate thresholds
are equally probable during the MCMC sampling process.

Next we examine the departure of each parameter’s density from its uniform prior
as a result of the Bayesian update via Eq. (3). We quantify these changes via the
Kullback–Leibler (KL) divergence between prior and marginal posterior densities,5

DKL(p||q) =

∞∫
−∞

p(x) ln
(
p(x)

q(x)

)
dx, (10)

where p is the posterior densty and q is the prior density. KL divergence results for
certain paramaters are presented in Fig. 15. In this figure, parameters are sorted in
ascending order based on their DKL values. Also shown in the figure is the inverse of
the scaled standard deviation based on the MCMC sample values for each model pa-10

rameter. This is obtained from the standard deviation of the MCMC samples for each
parameter, σi , by scaling with the standard deviation based on the corresponding prior
density, σ∗

i = σp,i/σq,i . The calibration exercise had negligible effect on the probabil-
ity density for the first two parameters, tleaf and br_som. DKL(p||q) values for these
two parameters were less than 10−2 and were rounded to zero. The corresponding σ∗

15

values are close to 1, indicating little change from their prior uniform densities. This
result confirms that NEE data contain little information on the turnover rate of SOM,
or on the rapidity of leaf drop (rather than the timing of leaf drop, see below). At the
other end of the spectrum, br_mr, gdd_min, and q10_mr, exhibit the largest DKL(p||q),
indicating a larger departure of their posterior densities from their prior density. These20

parameters are well constrained by the NEE data, reflecting the useful information
in the flux data on timing of phenological events (gdd_min) and the dynamics of au-
totrophic respiration (br_mr, q10_mr ). The large DKL(p||q) values for these parameters
are accompanied by small σ∗ values, or large values for 1/σ∗ as shown in Fig. 15,
indicators that the marginal posterior density is significantly narrower than their prior25
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density. Back-of-the-envelope regression tests empirically suggest a power law depen-
dence between DKL(p||q) and σ∗.

To further assess the importance of statistical dependencies between model param-
eters, we revisit the GSA exercise to determine the relative importance of model param-
eters, based on the posterior densities of model parameters instead of the prior ones.5

Figure 16 shows select first order Sobol indices given posterior distributions based on
D18. In this figure, several parameters are grouped together if the distance correla-
tion values, shown in Table 2, imply that their mutual dependence is significant. These
groups, named G1, G2, and G3, respectively, consist of the following parameters:

– G1: lma, nue, rg_frac10

– G2: q10_mr, q10_hr

– G3: gdd_min, gdd_max

The results shown with red bars in Fig. 16 are based on joint posterior distributions
for G1, G2 and G3, and marginal distributions for the rest of parameters. For the re-
sults shown with blue bars, the joint distributions for G1 through G3 are products of15

marginal distributions of each parameter in the group, hence neglecting any statistical
dependence. Visual inspection of the relative importance of parameters or groups of
parameters to the total variance of the average monthly NEE values shows that ne-
glecting joint dependecies between parameters can significantly alter the results. This
is true both for parameters that show significant dependence, e.g. see group G1, and20

for parameters that show little dependence on other parameters, e.g. br_mr.
Next, we analyze the calibration results for D23. For this model setup, the initial

values for the C pools at the beginning of year 1991 are part of the set of model
parameters and each DALEC simulation consists of only one cycle, for the time span
1992–2006. Table 3 shows R values for D23 results. Only the parameters common25

between D23 and D18 are listed in this table. The R values observed in this table for
D23 are similar to the ones observed above for D18 with the exception of pair (q10_mr,
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q10_hr ). While, for D18, these two parameters exhibit significant dependence, for D23
they are nearly independent. Figure 17 shows 1-D and 2-D joint marginal densities for
parameters with distance correlation factors greater than 0.3 based on D23 results. In
general, these marginal densities are similar to the ones based on D18.

Finally, Fig. 18 shows marginal densities for two Carbon pools that were updated in5

the calibration exercise D23. vpool2 corrresponds to the stem C while spool2 corre-
sponds to the soil organic matter. While dr shows little dependence on other model
parameters, it has a dominant role in the conversion of the litter C pool into soil organic
matter, and the distance correlation between this parameter and spool2 is about 0.5.

5 Predictive assessment10

In this section we explore the predictive skill given the posterior distributions for the
model parameters for D18 and D23. First, we employ the Bayesian posterior predic-
tive distribution (Lynch and Western, 2004) to assess the adequacy of the calibrated
DALEC model, and the Gaussian data noise model, for prediction of the NEE obser-
vations. Specifically, the posterior distribution for the predicted NEE data, p(y |D), is15

computed by marginalization of the likelihood over the posterior distribution of model
parameters and hyperparameters, here θ:

p
(
y |D
)
=
∫
θ

p(y |θ )p(θ |D)dθ. (11)

For the present work, y |θ ∼ N(m(θ ),Σ), where y = {yk |k = 1 . . .Nd } is a Nd -
dimensional vector with NEE predictions over a range of Nd days, and Σ is a diagonal20

covariance matrix with variances of daily NEE observations on the diagonal. The 1-D-
marginal posterior predictive distributions for daily NEE values for a two-year snapshot
around 1995 are shown in Fig. 19. These distributions were computed by sampling,
using the MCMC samples behind the posterior densities presented in the previous
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section. For computational efficiency, p(y |θ ) was computed with KDE for each θ sam-
ple. This density was then interpolated on a uniform grid centered around the daily
observed NEE value. It is worth to note that the variance of the posterior predictive
distributions can also be estimated analytically as the sum of the measurement error
variance and the pushed-forward variance, i.e. the variance of the output quantity of5

interest with respect to posterior variability.
The top frame in Fig. 19 corresponds to D18 and the bottom frame to D23. Generally,

the predicted data spread covers well the observed NEE values except for a time range
around May-June-July when the observations, with red line, are frequently outside the
5–95 % band, shown in blue. This discrepancy occurs mostly for years 1993–1996. For10

other years, the predicted data covers the May-June-July observational data well.
In order to quantitatively compare the predictive capability of the calibrated models

for D18 and D23, we adopt a probabilistic score based on the predictive cumulative
distribution function (CDF). The Continuous Rank Predictive Score (CRPS) (Gneiting
and Raftery, 2007) measures the difference between the CDF of the provided data and15

that of the forecast/predicted data, i.e. data generated based on the posterior predictive
distribution. Thus,

CRPS(F ,D) =
1
Nd

Nd∑
k=1

∞∫
−∞

(
Fk(yk |D)−HDk

(yk)
)2

dyk (12)

Here, Fk(yk |D) is the 1-D marginal posterior predictive CDF for day/component k com-
puted using 1-D marginal posterior predictive distributions20

Fk(yk |D) =

yk∫
−∞

pk
(
y ′
k |D
)

dy ′
k (13)

where

pk
(
yk |D

)
=
∫
p
(
y1,y2 . . . ,yNd

|D
)

dy1 · · ·dyk−1dyk+1 · · ·dyNd
. (14)
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is the 1-D marginal posterior predictive distribution corresponding to day k. The CDF of
the provided data is approximated as a Heaviside function centered at the observation
value Dk (Hersbach, 2000), HDk

(yk) =

is the 1D marginal posterior predictive distribution corresponding to day k. The CDF of the provided530

data is approximated as a Heaviside function centered at the observation valueDk (Hersbach (2000)),

HDk(yk) = 1yk≥Dk .

Table 4 displays CRPS values based on posterior distributions obtained by averaging over several

time ranges. The first row shows the values corresponding to a 60-day time frame, from mid-June

to mid-August, while the second row corresponds to the remainder of the year. The last row shows535

the aggregated values, considering the entire year. The averages in Eq. (12) are taken over all years

considered in this study. The lower values for D23 compared to D18 indicate a better predictive skill

for the setup when DALEC is run for one cycle and the C pools are treated as parameters. The results

reveal that the largest improvement, about 6%, occurs for the June-August time frame, while for the

rest of the year the improvement is about 2% only.540

In order to measure the effect of calibration on the predictive capability of DALEC we employ the

Continuous Rank Predictive Skill Score (CRPSS) (Wilks (2011))

CRPSS =
CRPSpsp−CRPSprp
CRPSprf −CRPSprp

(15)

whereCRPSpsp is the CRPS computed above based on the posterior predictive distribution,CRPSprp

is based on the prior predictive distribution, and CRPSprf is the CRPS based on “perfect” predic-545

tions. For the current study, the “perfect” predictions have a multivariate normal distribution centered

on the observations and diagonal covariance matrix Σ defined above. The prior predictive distribu-

tion is defined analogous to the posterior predictive distribution in Eq. (11), with p(θ|D) being

replaced by p(θ), the prior density for model parameters θ.

A CRPSS value of 0 implies no improvement of the predictive skill for the calibrated model550

parameters compared to the predictions based on the prior information, while a value of 1 can be

achieved when the posterior distribution reduces to a point and the model prediction is the same as the

corresponding experimental data. For the current study,CRPSprp = 2.38 andCRPSprf = 0.53 for

D18. This leads to CRPSS = 0.4, indicating a 40% improvement in the predictive skill of DALEC

as a result of calibration. We only show here the CRPSS values for D18 since for D23, the C pools555

employed improper priors for which the CRPSprp is not well defined.

6 Conclusions

We presented uncertainty quantification results for a process-based ecosystem Carbon model. We

assembled several probabilistic methodologies in a framework that tackles the connected problems

of parameter estimation and forward propagation of input uncertainties. Depending on the simula-560

tion setup, the model employs either steady state or non-steady assumptions, respectively, and it is

driven by meteorological data corresponding to years 1992-2006 at the Harvard Forest site. Daily

17

yk≥Dk
.

Table 4 displays CRPS values based on posterior distributions obtained by averaging
over several time ranges. The first row shows the values corresponding to a 60 day5

time frame, from mid-June to mid-August, while the second row corresponds to the
remainder of the year. The last row shows the aggregated values, considering the
entire year. The averages in Eq. (12) are taken over all years considered in this study.
The lower values for D23 compared to D18 indicate a better predictive skill for the
setup when DALEC is run for one cycle and the C pools are treated as parameters.10

The results reveal that the largest improvement, about 6%, occurs for the June–August
time frame, while for the rest of the year the improvement is about 2% only.

In order to measure the effect of calibration on the predictive capability of DALEC we
employ the Continuous Rank Predictive Skill Score (CRPSS) (Wilks, 2011)

CRPSS =
CRPSpsp −CRPSprp

CRPSprf −CRPSprp
(15)15

where CRPSpsp is the CRPS computed above based on the posterior predictive distri-
bution, CRPSprp is based on the prior predictive distribution, and CRPSprf is the CRPS
based on “perfect” predictions. For the current study, the “perfect” predictions have
a multivariate normal distribution centered on the observations and diagonal covari-
ance matrix Σ defined above. The prior predictive distribution is defined analogous to20

the posterior predictive distribution in Eq. (11), with p(θ|D) being replaced by p(θ), the
prior density for model parameters θ.

A CRPSS value of 0 implies no improvement of the predictive skill for the calibrated
model parameters compared to the predictions based on the prior information, while
a value of 1 can be achieved when the posterior distribution reduces to a point and25

the model prediction is the same as the corresponding experimental data. For the cur-
rent study, CRPSprp = 2.38 and CRPSprf = 0.53 for D18. This leads to CRPSS = 0.4,
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indicating a 40% improvement in the predictive skill of DALEC as a result of calibration.
We only show here the CRPSS values for D18 since for D23, the C pools employed
improper priors for which the CRPSprp is not well defined.

6 Conclusions

We presented uncertainty quantification results for a process-based ecosystem Carbon5

model. We assembled several probabilistic methodologies in a framework that tackles
the connected problems of parameter estimation and forward propagation of input un-
certainties. Depending on the simulation setup, the model employs either steady state
or non-steady assumptions, respectively, and it is driven by meteorological data cor-
responding to years 1992–2006 at the Harvard Forest site. Daily Net Ecosystem Ex-10

change (NEE) observations were available to calibrate the model parameters and test
the performance of the model.

We first discussed global sensitivity analysis (GSA) results for the complete set of
input parameters. Based on their contribution to the variance, we find that different pa-
rameters have larger impacts for NEE at certain times of the year when the processes15

they control become important. One example is the tsmin parameter, which is the crit-
ical temperature at which leaf fall begins, and mainly affects NEE in October. We also
found that parameter interactions can also be relevant to the variability of NEE or Gross
Primary Production (GPP). Unlike NEE and GPP which are fluxes, the Carbon pools,
either vegetation or soil, tend to vary more slowly and their month-to-month variability20

depends on a small subset of parameters.
We also employed Fisher Information Matrix (FIM) computations to estimate the rel-

ative information the NEE data contains on the model parameters. To our knowledge
this type of study is employed for the first time in the context of a Carbon model. We
ranked model parameters according to the relative magnitude of the diagonal entries25

in the FIM and generally found that most “informed” parameters are also ranked as
important based on the GSA results.
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We then proceeded to calibrate the model parameters in a Bayesian framework. In
this context we examined both steady and unsteady assumptions for the Carbon model
simulations. The daily discrepancies between measured and predicted NEE values
were modeled as independent and identically distributed Gaussians with prescribed
daily variance according to the recorded instrument error. All model parameters were5

assumed to have uninformative priors with bounds set according to expert opinion.
The posterior distribution of model parameters was sampled sequentially by first

considering the most relevant parameters and then progressively adding less impor-
tant parameters, according to GSA and FIM results. The posterior samples, obtained
with a Markov Chain Monte Carlo algorithm, exhibit significant dependencies between10

some of the model parameters. Further, a GSA analysis based on marginal posterior
distributions shows the importance of considering parameter dependencies when es-
tablishing the importance of each parameter or set of parameters for given quantities
of interest.

The predictive capabilities of the model, employing the parameters’ posterior distribu-15

tion, were assessed qualitatively through posterior predictive checks and quantitatively
through Continuous Rank Predictive Score (CRPS) computations. Based on the CRPS
values, the unsteady model setup, for which C pools are set as simulation parameters,
performed slightly better, in particular during the growing seasons, compared to model
setup assuming steady state conditions.20

The analysis presented in this paper considered a single data series at one site only.
However, the Bayesian framework employed in the parameter calibrations is well-suited
to deal with both heterogenous data and models. We are currently exploring avenues
to extend this work to multi-site studies together with employing multiple data streams
to better constrain the model parameters.25

The framework presented here encompasses robust statistical methodologies that
can be employed in the development and analysis of more detailed models like the
Community Land Model (CLM). Since some of these methodologies are sampling-
based, their application is restricted to computationally inexpensive models. To this end
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we are currently working on developing efficient surrogate models that can be used in
place of expensive models like CLM. With a surrogate model approach in place, one
can proceed to study individual CLM sub-models as well as the CLM model as a whole
and potentially improve its predictive capabilities.
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Table 1. Description of model parameters.

Param. Nom. val. Range Description Units

gdd_min 100 10 · · ·250 threshold for leafout [◦C day]
gdd_max 200 50 · · ·500 threshold for max. LAI [◦C day]
tsmin 5 0 · · ·10 Temperature for leaffall [◦C]
laimax 4 2 · · ·7 Seasonal max. LAI [m2 leaf/m2]
leaffall 0.1 0.03 · · ·0.95 rate of leaffall [day−1]

D
ec

id
.P

he
n.

lma 80 20 · · ·150 specific leaf area [gC/m2 leaf]

A
C

M leafcn 25 fixed leaf C : N ratio [gC/gN]
nue 7 1 · · ·20 Nitrogen use efficiency [ ]

q10_mr 2 1 · · ·4 Maintenance resp. T-sensitivity [ ]
br_mr 10−4 10−5 · · ·10−2 Base rate for maintenance resp. [gC m−2 day−1/gC biomass]A

.R
.

rg_frac 0.2 0.05 · · ·0.5 growth respiration fraction [ ]

A
. astem 0.7 0.1 · · ·0.95 Allocation to plant stem pool [ ]

tstem 1
50×365

1
250×365 · · ·

1
10×365 stem turnover time [day−1]

troot 1
5×365

1
25×365 · · ·

1
365 root turnover time [day−1]

Li
tte

r.

tleaf 10−2 10−3 · · ·10−1 leaf turnover time [day−1]

q10_hr 2 1 · · ·4 Heterotrophic resp. T-sensitivity [ ]
br_lit 1

2×365
1

5×365 · · ·
10

5×365 base turnover for litter [gC m−2 day−1/gC litter]
br_som 1

30×365
1

100×365 · · ·
1

10×365 base turnover for SOM [gC m−2 day−1/gC SOM]

D
ec

om
p.

dr 10−3 10−4 · · ·10−2 decomposition rate [day−1]
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Table 2. Distance correlation factors for D18. The diagonal blocks are marked according to the
process the parameters contribute to, see also Fig. 2 and Table 1. The entries in the diagonal
block show dependencies between parameters from the same process, while the entries in the
off-diagonal block show dependencies between parameters from different processes.

gdd_min 1
gdd_max 0.4 1
tsmin 0 0 1
laimax 0 0 0 1
leaffall 0.1 0.1 0 0.1 1
lma 0.4 0.1 0 0 0.1 1
nue 0.1 0.2 0 0 0.3 0.7 1
q10_mr 0.1 0.2 0 0 0 0.1 0.2 1
br_mr 0.2 0.3 0 0 0.2 0.3 0.1 0.3 1
rg_frac 0.2 0.3 0 0 0.4 0.2 0.7 0.3 0.3 1
astem 0 0.1 0 0 0.1 0 0 0.2 0.1 0 1
tstem 0 0 0 0 0.1 0 0 0.1 0.1 0 0 1
troot 0 0 0 0 0 0 0 0.1 0 0 0 0 1
tleaf 0 0 0 0 0 0 0 0 0 0 0 0 0 1
q10_hr 0.1 0.1 0 0 0.1 0.2 0 0.6 0.3 0.3 0.3 0.2 0 0 1
br_lit 0 0.2 0.1 0 0.1 0.1 0 0 0.1 0.1 0.2 0 0.1 0 0.1 1
br_som 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
dr 0 0.1 0 0 0 0 0 0 0.1 0 0.1 0 0.1 0 0 0.2 0 1

gd
d_

m
in

gd
d_

m
ax

ts
m

in

la
im

ax

le
af

fa
ll

lm
a

nu
e

q1
0_

m
r

br
_m

r

rg
_f

ra
c

as
te

m

ts
te

m

tr
oo

t

tle
af

q1
0_

hr

br
_l

it

br
_s

om dr

Table 2. Distance correlation factors for D18. The diagonal blocks are marked according to the process the parameters contribute to, see also Fig. 2 and Table 1. The entries
in the diagonal block show dependencies between parameters from the same process, while the entries in the off-diagonal block show dependencies between parameters from
different processes.
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Table 3. Distance correlation factors for D23. The diagonal blocks are marked according to the
process the parameters contribute to, see also Fig. 2 and Table 1. The entries in the diagonal
block show dependencies between parameters from the same process, while the entries in the
off-diagonal block show dependencies between parameters from different processes.

gdd_min 1
gdd_max 0.4 1
tsmin 0 0 1
laimax 0 0.1 0 1
leaffall 0 0 0 0.1 1
lma 0.3 0.1 0 0 0.2 1
nue 0.1 0.3 0 0 0.3 0.8 1
q10_mr 0.1 0.1 0 0 0.1 0.2 0.2 1
br_mr 0.1 0.3 0 0 0.3 0.3 0.1 0.2 1
rg_frac 0.2 0.3 0 0 0.3 0.4 0.8 0.1 0.1 1
astem 0 0 0 0 0 0 0 0.2 0.1 0 1
tstem 0 0 0 0 0 0.1 0.1 0.2 0.1 0 0 1
troot 0.1 0 0 0 0 0 0 0.5 0 0 0.1 0 1
tleaf 0 0 0 0 0 0 0 0.1 0 0 0 0 0 1
q10_hr 0.1 0 0 0 0.1 0.1 0.1 0.1 0 0.1 0.1 0.1 0.3 0 1
br_lit 0 0.1 0 0 0 0 0 0.1 0 0 0.1 0.1 0.1 0 0 1
br_som 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 1
dr 0 0 0 0 0 0 0 0.1 0.1 0 0 0.1 0.3 0 0.1 0.1 0.3 1
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Table 3. Distance correlation factors for D23. The diagonal blocks are marked according to the process the parameters contribute to, see also Fig. 2 and Table 1. The entries
in the diagonal block show dependencies between parameters from the same process, while the entries in the off-diagonal block show dependencies between parameters from
different processes.
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Table 4. CRPS values for D18 and D23.

Period CRPS-D18 CRPS-D23 % change

Jun–Aug 1.26 1.18 6
Rest of year 1.27 1.25 2
Overall 1.27 1.24 2.5
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Table 5. Nomenclature.

ACM Aggregate Canopy Model
CRPS Continuous Rank Predictive Score
CRPSS Continuous Rank Predictive Skill Score
DALEC Data Assimilation Linked Ecosystem Carbon
FIM Fisher Information Matrix
GPP Gross Primary Production
GSA Global Sensitivity Analysis
MCMC Markov Chain Monte Carlo
NEE Net Ecosystem Exchange
QoI Quantity of Interest
TSC Total Soil Carbon
TVC Total Vegetation Carbon
DKL(p||q) Kullback–Leibler divergence between probability densities

q and p
LD = p(D|θ ) Likelihood of the data D for a particular instance of model

parameters θ

p(θ ), p(θ |D) prior and posterior probability densities, respectively, for
model parameters θ

p(y |D) posterior distribution for the predicted NEE data y
pk(yk |D) marginal posterior distribution for the predicted NEE com-

ponent yk
R(X ,Y ) Distance correlation between random variables X and Y
Si First-order Sobol index for parameter i
Si j Joint Sobol index for parameters i and j
θ Vector of parameters for DALEC
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Parameter
Estimation

Forward UQ

Bayesian
Framework

Measurement Model
z = g(x; θ) + εg + εd

FIM GSA

z

x

Data (D)

θ

p
d
f(
θ|
D

)

Computational Model
y = m(x; θ)

x

y
Figure 1. Schematic of parameter estimation, on yellow background, and forward UQ work-
flows, on green background. For this work DALEC is used as both “measurement model”, g,
and as “computational model”, m. In the Bayesian framework the parameters estimation de-
pends both on the model error εg and on the measurement error εd.
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Figure 2. Schematic of processes, shown with green boxes, in DALEC with associated parame-
ters, listed in orange boxes. The blue arrows indicate how internal parameters and QoIs, shown
with blue circles, impact DALEC processes, while while the green arrows show the impact of
processes on the QoI and other internal parameters.
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Figure 3. Matrices with first-order Sobol indices for monthly averages of NEE. Also shown
are the main Sobol indices for the global average (G). The largest value Sbr_mr = 0.49 occurs
for September average NEE. The sum of first-order Sobol indices for each month is shown in
parentheses.
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Figure 4. Matrices with main Sobol indices for monthly averages of GPP. Also shown are
the main Sobol indices for the global average (G). The largest value Sleaffall = 0.77 occurs for
December average GPP. The sum of first-order Sobol indices for each month is shown in paren-
theses.
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Figure 5. Matrices with main Sobol indices for monthly averages of TVC. Also shown are
the main Sobol indices for the global average (G). The largest value Sbr_mr = 0.36 occurs for
several TVC monthly averages. The sum of first-order Sobol indices for each month is shown
in parentheses.

6934

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/6893/2014/gmdd-7-6893-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/6893/2014/gmdd-7-6893-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 6893–6948, 2014

Uncertainty
quantification for

Carbon Cycle model

C. Safta et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

G
D
D
_
M
IN

G
D
D
_
M
A
X

T
S
M
IN

L
A
IM

A
X

L
E
A
F
F
A
L
L

L
M
A

N
U
E

Q
10
_
M
R

B
R
_
M
R

R
G
_
F
R
A
C

A
S
T
E
M

T
S
T
E
M

T
R
O
O
T

T
L
E
A
F

Q
10
_
H
R

B
R
_
L
IT

B
R
_
S
O
M

D
R

G(0.71)

D(0.71)

J(0.71)

F(0.71)

M(0.71)

A(0.71)

M(0.71)

J(0.71)

J(0.71)

A(0.71)

S(0.71)

O(0.71)

N(0.71)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 6. Matrices with main Sobol indices for monthly averages of TSC. Also shown are
the main Sobol indices for the global average (G). The largest value Sbr_som = 0.38 occurs for
several TSC monthly averages. The sum of first-order Sobol indices for each month is shown
in parentheses.
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Figure 7. Relevant joint Sobol indices corresponding to monthly NEE averages for (a) May
and (b) October. The labels on each line shows the magnitude, in %, of Sobol indices for the
corresponding parameter pairs.
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Figure 8. Relevant joint Sobol indices corresponding to monthly GPP averages for (a) May
and (b) November. The labels on each line shows the magnitude, in %, of Sobol indices for the
corresponding parameter pairs.
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Figure 9. Snapshot of NEE observations (with red line) for the Harvard Forest site. The light
blue region, bordered by thick blue lines corresponds to ±2σ around the daily NEE values.
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Figure 9. Snapshot of NEE observations (with red line) for the Harvard Forest site. The light blue region,
bordered by thick blue lines corresponds to ±2σ around the daily NEE values.
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Figure 10. Normalized histograms for diagonal entries of the Fisher Information Matrix corresponding to pa-
rameters gdd_min, gdd_max, leaffall, q10_mr, br_mr, and rg_frac. Results are based on NEE and an ensemble
of parameter values drawn from the corresponding prior distributions.
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Figure 10. Normalized histograms for diagonal entries of the Fisher Information Matrix cor-
responding to parameters gdd_min, gdd_max, leaffall, q10_mr, br_mr, and rg_frac. Results
are based on NEE and an ensemble of parameter values drawn from the corresponding prior
distributions.
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Figure 11. Normalized histograms for diagonal entries of the Fisher Information Matrix corresponding to
parameters astem, tstem, troot, br_lit, br_som, and dr. Results are based on NEE and an ensemble of parameter
values drawn from the corresponding prior distributions.
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ini. For the following
iteration, (i+1), the initial condition is constructed using the MAP estimate for θ(i), augmented with initial
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Figure 11. Normalized histograms for diagonal entries of the Fisher Information Matrix corre-
sponding to parameters astem, tstem, troot, br_lit, br_som, and dr. Results are based on NEE
and an ensemble of parameter values drawn from the corresponding prior distributions.
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Figure 13. D18-problem: 1-D marginal and 2-D joint marginal PDFs for parameters showing
distance correlation factors above 0.3, see also Table 2.
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Figure 14. D18-problem: 1D marginal PDFs for parameters showing distance correlation factors less than 0.3
with other parameters, see also Table 2.
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Figure 14. D18-problem: 1-D marginal PDFs for parameters showing distance correlation
factors less than 0.3 with other parameters, see also Table 2.
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Figure 15. Kulback–Leibler divergence, DKL(p||q), between prior q and posterior p densities
and scaled inverse standard deviation, 1/σ∗ = σq/σp for select parameters.
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Figure 16. First order Sobol indices for June and September average NEE values. The red bars
show results based on joint 3-D (for group G1) and 2-D (for groups G2 and G3) posterior dis-
tributions and 1-D marginal posterior distributions for the rest; blue bars show results based on
1-D marginal posterior distributions for all parameters; G1= {lma, nue, rg_frac}, G2= {q10_mr,
q10_hr}, G3= {gdd_min, gdd_max}.
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Figure 17. D23-problem: 1-D marginal and 2-D joint marginal PDFs for parameters showing
distance correlation factors above 0.3, see also Table 3.
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Figure 18. D23-problem: 1-D marginal and 2-D joint marginal PDFs for parameters correlated
with the Carbon pools.
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Figure 19. Posterior predictive distributions using the calibration results for D18 (top frame)
and D23 (bottom frame) presented in Sect. 4. The blue regions correspond to the daily 5–95 %
quantile range and the green regions to 25–75 % quantile range. The red line shows the daily
NEE observations.

6948

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/6893/2014/gmdd-7-6893-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/6893/2014/gmdd-7-6893-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

